Мощные линейные и шим усилители. Широтно-импульсная модуляция (ШИМ). Несимметричный или дифференциальный

Мощные линейные и шим усилители. Широтно-импульсная модуляция (ШИМ). Несимметричный или дифференциальный
Рассказать в:
Времена нынче такие, что впору открывать подзабытую рубрику «Сделай сам» эпохи соцдефицита. Девальвация рубля привела к удорожанию импортной электроники, покупать новый усилитель мощности стало накладно. Да еще классические Hi-Fi-устройства, работающие в классах А и А-В, обладают прискорбно малым КПД - это при недешевой электроэнергии. Поэтому «цифровое» усиление в классе D - это в чем-то антикризисное решение. При управлении громкостью в микшере аудиокарты собрать цифровой усилитель можно, даже если паяльник держишь в руках первый раз. Главное - раздобыть «правильную» микросхему…

Фирма NXP, не так давно выпустившая на рынок рекордно мощную TDA8950E класса D, была основана многоуважаемой Philips с ориентацией на производство полупроводников. Так что сомневаться не приходится - очередной продукт будет неординарным.Амплитудно-частотная характеристика «акустических» выходов микросхемы, как и следовало ожидать, зависит от сопротивления нагрузки. Проседать на высоких частотах микросхема начинает с нагрузкой 8 Ом. Тогда как 4 и 6 Ом данной микросхеме просто в радость. Завал на низких частотах несущественный, причем величина нагрузки не сказывается. Подключение по мостовой схеме в монорежиме равномерно поднимает АЧХ аккурат на 6 дБ. По мере подъема уровня мощности гармонические искажения на разных частотах ведут себя по-разному. На средних частотах искажения типично повышены почти во всем диапазоне мощностей. На 10 Вт для 1 кГц искажения в 0,1% все-таки маленькими не назовешь. Минимальные искажения на 100 Гц при 10 Вт: 0,007%. С нагрузкой 4 Ом глобальный скачок искажений происходит на рубеже 100 Вт. Проникновение каналов невелико, минимальное - на частоте 100 Гц (-68 дБ). Показательна АЧХ, снятая в режиме «заглушки» (Mute): зависимость от нагрузки неактуальна, а вот экспоненциальный рост уровня фона в ультразвуковой области частот настораживает.

В рознице найти микросхемы серии TDA не составляет труда. Продаются и готовые платы, к которым остается лишь докупить блок питания. К нам на тест поступила новейшая микросхема TDA8950E, размещенная на миниатюрной «демонстрационной» плате с соответствующей обвязкой. На микросхему нацеплен (поджат накидной скобой) небольшой металлический радиатор с развитым оре брением для естественного теплоотвода. Чтобы протестировать сие устройство, ничего не оставалось, как быстренько сделать усилитель своими руками.

Чем меньше напряжение подводимого питания микросхемы, тем меньше выдаваемая на выходе мощность. Электрически 150 Вт на канал достигается при ±37 В полярного питания. В этом случае трансформатор понадобится крепенький, чтобы ток 2 А держал, не прогибаясь. В идеале - тороидальный, причем с двумя выходными обмотками, чтобы получить полярное питание без заморочек. Диодный мост лучше взять готовый, у которого все в одном корпусе, торчат только четыре ножки - к двум внутренним подводим переменное напряжение, с двух внешних снимаем постоянное. Затем берем пару полярных конденсаторов емкостью от 2000 мкФ на напряжение 50–60 В (с запасом) (10 000 мкФ - то, что доктор прописал) и, строго соблюдая полярность (иначе «кондерам» хана), включаем параллельно с общей точкой, образованной средней жилой выходных обмоток трансформатора. Один «кондер» емкостью 10 000 мкФ обойдется рублей в 150. Никто не запрещает набрать желаемую суммарную емкость, запараллелив недорогие по 2000 мкФ.

Чтобы сгладить высокочастотные импульсы, в том числе проникающие из розетки, впаиваем (также параллельно) по керамическому конденсатору емкостью около 0,1 мкФ (полярность не важна). Для обеспечения безопасности обязателен тумблер, отключающий как «фазу», так и «землю». Предохранитель желателен (на ток 1–2 А, соответственно потреблению). Еще не помешает сразу за предохранителем (который впаивается последовательно, т.е. в разрыв одной из жил) воткнуть параллельно вилке один конденсатор эдак на 630 В емкостью 0,047 мкФ. Поясним: конденсатор, впаянный параллельно нагрузке, представляет собой фильтр первого порядка, подавляющий все составляющие выше определенной частоты, обусловленной емкостью этого конденсатора. Чем больше емкость, тем ниже частота «отсечки». Отрицательный провод полярного питания подводим к клемме платы усилителя, помеченной как Vss, а положительный - к клемме Vdd. Провод, отходящий от общей точки, забрасываем на клемму «земли» (Gnd). Все! Усилитель готов.


Перед подачей 220 В разумно пройтись по пайке, «прозвонив» тестером на предмет слу- чайного короткого замыкания. Первый раз 220 В подать на несколько секунд, в идеале подключив не колонки, а мощные резисторы не менее 4,7 Ом на 10–15 Вт. Хилые (до ~5 Вт) быстро или вообще сразу сдохнут. Поначалу стоит подавать слабый сигнал, убрав уровень громкости в аудиокарте чуть ли не до нуля. Если ни один из элементов не будет слишком быстро греться, трансформатор не будет зловеще гудеть и т.п., усилитель можно эксплуатировать. Саму микросхему спалить практически невозможно благодаря электрической защите от короткого замыкания, термической защите от перегрева, защите от заряда статического электричества и прочим блокировкам «от дурака». Пассивные акустические системы подключаются с соблюдением фазы: одна колонка на Out1 с клеммами «+» и «–», другая на Out2 с соблюдением тех же «+» и «–». Если перепутать местами на одной из колонок «+» и «–» (полярность), то ничего не сгорит, но честных стереоэффектов не получить.


Провести измерения параметров усилителя класса D посредством популярной программы RMAA и доступной звуковой карты, не имея качественного (более 40 дБ) аналогового фильтра, отсекающего весь ультразвуковой мусор, - пустая затея. Пресловутая несущая частота ШИМ (для TDA8950E это 345 кГц) - это только верхушка айсберга. Конечно, подавление данной частоты, пролезающей на выходы микросхемы, требует мощных фильтров. Не испортить при этом полезный сигнал не так просто, как кажется. Задача усугубляется активностью импульсов, коротких во времени, но неслабых по амплитуде. Посему в данном случае париться с измерениями в домашних условиях явно не стоит.


Экспертное прослушивание происходило в сравнении с интегральным Hi-Fi-стереоуси-лителем Harman-Kardon HK970 мощностью 120 Вт на 4 Ом (0,3% THD), имеющим классическую схему на неслабых полевых транзисторах и потребляющим под 410 Вт. В качестве пассивных акустических систем выступала Hi-Fi-стереопара (тщательно подобранная изготовителем по технологическому разбросу параметров) DALI Suite, сделанная в Дании. Это удачная связка, что могут подтвердить многие аудиофилы. Акустика функционирует подобно беспристрастному студийному монитору, не прощая малейших огрехов записи. Искажения какого-либо блока усиления, если таковые будут критичными, также легко заметны на слух.


Мощность, выдаваемая примененной TDA8950E, откровенно удивила. В помещении площадью12 кв. м задрожали стекла уже на «малых оборотах». Выкручивать уровень громкости в микшере аудиокарты не понадобилось. Левый и правый каналы получились, правда, не совсем идентичными, воссоздаваемая стереокартина может размазываться. Однако при воспроизведении сжатых форматов вроде МР3 это некритично. По сравнению с истинно Hi-Fi-ным усилителем в связке с чувствительной акустикой привносимые нашим «цифровиком» искажения не пройдут не замеченными для опытного аудиофила.

Итак, «цифровой» стереоусилитель, сделанный на основе TDA8950E, получился мощным и экономичным. Если не злоупотреблять экстремальной громкостью, то качество звука обеспечивается в целом приемлемое (по меркам мультимедийной акустики). Особое внимание следует обратить на выходные фильтры - на «китовой» плате они реализованы не лучшим образом. Наиболее оптимальный вариант применения микросхемы TDA8950E - монорежим с подключением по мостовой схеме, то есть в активных сабвуферах. Похвально, что усилитель не пасует перед низкоомной нагрузкой и не зажимает низкие частоты на малой громкости.

Принцип работы усилителей класса D

Технология широтно-импульсного (ШИМ) усиления звука, породившая так называемый класс D, стала внедряться более десяти лет назад, хотя сама идея зародилась раньше. В последнее время усилители класса D проникли не только в портативные цифровые аудиоустройства. В телевизорах, музыкальных центрах, коробочных домашних театрах, автомобильных аудиоустройствах и во многих мультимедийных акустических системах обосновались довольно миниатюрные микросхемы, выделяющие на удивление мало тепла. Эффективность современных схем быстро растет с мощностью, достигая 90% уже на половине от ее максимума. При этом эффективность транзисторных усилителей еще недавно самого распространенного класса A-B не дотягивает до 40%. На полной мощности сравнивать бессмысленно, поскольку любой усилитель уже на подходе к заветному максимуму срывается в клиппирование, плодя высокочастотные гармоники. Класс А в состоянии похвастаться только 25% эффективности, а чистый класс В - 78% (теоретически, при мощности условно близкой к максимальной).


Топология класса А, обеспечивающая наиболее качественный звук, подразумевает использование каждого транзистора как источника постоянного тока, способного снабдить динамик необходимым током как при положительной полуволне, так и при отрицательной (звуковой сигнал от природы полярен). Такому усилителю, грубо говоря, приходится высаживать половину мощности на поддержание постоянной составляющей тока «нейтрального уровня», то есть даже тогда, когда входной сигнал отсутствует. В топологии класса В поддержание постоянной составляющей тока игнорируется за счет того, что транзисторы заставляют работать на манер тянитолкая для положительной и отрицательной полуволн соответственно. Расплата неминуема: минимизация искажений выливается в серьезную техническую задачу. Гибридная топология класса А-В допускает постоянную составляющую тока на выходе транзисторов, но гораздо меньшей величины, чем в классе А, дабы не дергать транзисторы хотя бы на малой мощности (в отличие от ласса В). То есть усилители класса А-В на малой мощности работают в классе А, а на средней и максимальной - в классе В. Естественно, на малой мощности эффективность усиления в классе А-В получается низкой, зато с искажениями нет проблем.

Фишка же топологии класса D в том, что благодаря предварительному широтно-им-пульсному преобразованию звукового сигнала транзисторы функционируют в импульсном режиме на высокой частоте, находясь все время в открытом состоянии. Образно говоря, не успевают «завязнуть» на постоянном токе, а необходимость в каком-либо управлении отпадает - тактирование автоматически задается частотой модуляции.

Усилители класса D часто называют цифровыми. Дело в том, что ядру микросхемы в общем-то «по барабану» с каким сигналом работать: с аналоговым ШИМ (внешне сильно напоминает DSD-кодирование для SACD) или с сугубо цифровым однобитным (с передискретизацией). По сути, и там и там - кодовая модуляция, а кодированный сигнал имеет постоянные во времени пиковые амплитуды (либо нолик, либо единичка). Усиливать такой сигнал проще пареной репы. Правда, результат подобного усиления придется подвергать специфической «зачистке», но это уже отдельная история.


Раздел: [Усилители мощности низкой частоты (ламповые)]
Сохрани статью в:

Традиционные аудиоусилители классов А, В и АВ для мобильных устройств с автономным питанием уже давно перестали устраивать разработчиков из-за их низкого КПД и, как следствие, высокого расхода энергии батареи или аккумулятора. Усилители класса D имеют гораздо более высокий КПД, поэтому именно они наилучшим образом удовлетворяют предъявленным требованиям к современной портативной технике. Эти усилители применяются и в стационарной технике (телевизоры, персональные компьютеры, домашние или автомобильные стереосистемы и даже мощная усилительная техника для театров и концертных залов) благодаря уменьшению габаритов, веса и цены при сопоставимых параметрах качества с приборами предыдущих поколений классов А, В и АВ. Достижения полупроводниковой технологии последних лет позволили компании Texas Instruments разработать микросхемы для создания высококачественных усилителей звуковой частоты класса D с максимальной выходной мощностью от единиц до нескольких сотен Вт.

Рассеиваемая мощность усилителя, работающего в классе D, существенно меньше, чем у аналогичных приборов класса АВ, работающих в тех же режимах. Это проиллюстрировано на рис. 1 (в качестве примера взята микросхема Texas Instruments TPA2012D2, предназначенная для усилителей портативной техники).

Рис. 1.

Из рисунка 1 хорошо видно, что при одинаковой выходной мощности усилитель класса D имеет потери мощности в несколько раз меньшие по сравнению с аналогичными усилителями класса АВ во всем диапазоне выходных мощностей. Наибольший выигрыш получается при средней выходной мощности. Именно в этом режиме чаще всего и используется аппаратура для воспроизведения звука. Отмеченные свойства дополняет рис. 2, иллюстрирующий зависимости КПД от выходной мощности этих же усилителей при режимах измерения, аналогичных рис. 1. При малой и средней мощностях КПД усилителя класса D в два-три раза выше, чем у усилителя класса АВ.

Рис. 2.

Сравнение эффективности и рассеиваемой мощности для усилителей с очень низкой выходной мощностью может оказаться не в пользу усилителей класса D из-за относительно высокой мощности высокочастотного модулятора, преобразующего аналоговый сигнал в прямоугольные импульсы с широтно-импульсной модуляцией (ШИМ). По этой причине линейные усилители класса АВ при очень низких выходных мощностях иногда оказываются предпочтительнее класса D. Принцип работы простейшего усилителя класса D без обратной связи поясняет рисунок 3.

Рис. 3.

Входной сигнал предварительного усилителя модулируется треугольными колебаниями для преобразования в широтно-модулированные импульсы, которые усиливаются выходным каскадом, работающим в ключевом режиме. Далее LC-фильтр низких частот интегрирует импульсы разной длительности и срезает высокочастотные составляющие спектра, оставляя только выделенный сигнал звуковой частоты. Осциллограммы процесса ШИМ для усилителя класса D, выполненного по мостовой схеме, приведены на рис. 4. Модуляция в усилителях класса D может осуществляться разными способами, но наиболее распространена именно ШИМ.

Рис. 4.

Звуковой сигнал сравнивается с сигналом пилообразной или треугольной формы фиксированной частоты. Первый усилитель на рисунке 3 необходим для предварительного усиления и смещения сигнала до нужного уровня. Второй усилитель и генератор треугольного напряжения образуют модулятор ШИМ. На рисунке 4 длительность широтно-модулированных импульсов пропорциональна уровню входного аналогового сигнала. Мостовой схеме необходимы импульсы ШИМ противоположной полярности для управления другим плечом моста. На рисунках 3 и 4 показаны упрощенные варианты схем. В реальных схемах усилителей класса D обязательно вводятся формирователи времени паузы между импульсами для исключения одновременного включения двух выходных транзисторов и устранения сквозных токов. Частота модуляции и среза низкочастотного фильтра обычно выбирается в несколько раз больше верхней граничной частоты пропускания усилителя. К выбору элементов LC-фильтра необходимо относиться очень внимательно. Этому вопросу уделяется особое внимание в документации производителя и руководствах по применению.

Texas Instruments выпускает микросхемы для создания усилителей класса D низкой, средней и высокой мощности. Параметры для усилителей класса D низкой мощности приведены на рис. 5 и в табл. 1.

Рис. 5.

Таблица 1. Микросхемы Texas Instruments для усилителей класса D c низкой и средней выходной мощностью (аналоговый вход)

Наименование Описание Стерео/ моно Pвых, Вт Rнагр. (min), Ом Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR** дБ Корпус(а)
(min) (max)
TPA2017D2 SmartGain, AGC/DRC, GPIO интерфейс Стерео 2,8 4 2,5 5,5 0,2 80 QFN-20
TPA2000D2 усилитель средней мощности Стерео 2,5 3 4,5 5,5 0,05 77 TSSOP-24
TPA2000D4 усилитель для стереотелефонов Стерео 2,5 4 3,7 5,5 0,1 70 TSSOP-32
TPA2012D2 усилитель в корпусе WCSP 2 x 2 мм Стерео 2,1 4 2,5 5,5 0,2 75 WCSP-16, QFN-20
TPA2016D2 SmartGain, AGC/DRC, I2C интерфейс Стерео 1,7 8 2,5 5,5 0,2 80 WCSP-16
TPA2001D2 усилитель низкой мощности Стерео 1,25 8 4,5 5,5 0,08 77 TSSOP-24
TPA2100P1 для пьзокерамического излучателя Моно 19 Vpp 1,5 мкФ (пьезо) 2,5 5,5 0,2 90 WCSP-16
TPA2035D1 дифференциальный вход, 1,5 х 1,5 мм Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2032/3/4D1 дифференциальный вход, фикс. усиление Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2013D1 Моно 2,7 4 1,8 5,5 0,2 95 WCSP-16, QFN-20
TPA2036D1 защита от КЗ с автовосстановлением Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2031D1 аналог TPA2010D1, но с плавным стартом Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2010D1 дифференциальный вход;1,45 х 1,45 мм Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2018D1 SmartGain AGC/DRC, I2C интерфейс Моно 1,7 8 2,5 5,55 0,2 80 WCSP
TPA2014D1 встроенный повышающий DC/DC-преобр. Моно 1,5 8 2,5 5,5 0,1 91 WCSP-16, QFN-20
TPA2006D1 дифференциальный вход Моно 1,45 8 2,5 5,5 0,2 75 QFN-8
TPA2005D1 дифференциальный вход Моно 1,4 8 2,5 5,5 0,2 75 MSOP-8, QFN-8, BGA-15
*Half Power THD+N - (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц). **PSSR - Power Supply
Rejection Ratio - коэффициент подавления помех по цепям питания

В первую очередь эти микросхемы предназначены для встраивания в мобильные устройства. Подавляющее большинство таких усилителей расчитано на напряжение питания от 2,5 до 5,5 В, но микросхема одноканального усилителя TPA2013D1 имеет расширенный диапазон напряжений питания от 1,8 до 5,5 В благодаря встроенному повышающему DC/DC-преобразователю (Boosted DC/DC ). Это позволило обеспечить постоянство выходной мощности при всем диапазоне рабочих напряжений питания по сравнению с обычными усилителями класса D, что наглядно проиллюстрировано на рис. 6.

Рис. 6.

При выходной мощности около 1,5 Вт в диапазоне напряжений питания от 2,3 до 4,8 В характеристика находится в пределах ±0,1 Вт. Большинство обычных усилителей этого класса имеют практически линейную зависимость максимальной выходной мощности от напряжения питания. Преимущество усилителей со встроенным повышающим DC/DC-преобразователем - возможность работы при гораздо более низком напряжении питания батареи (или при ее более глубоком разряде), что повышает степень использования автономного источника питания.

Структурная схема микросхем TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-конвертером показана на рис. 7.

Рис. 7.

В микросхемах предусмотрена защита от нежелательных переключений при коммутации повышающего DC/DC-преобразователя. Встроенный стабилизатор обеспечивает стабильность характеристик в широком диапазоне напряжений питания. При необходимости выход повышающего DC/DC-преобразователя можно использовать для питания маломощных дополнительных схем портативного устройства. Если внимательно посмотреть на параметр PSSR (коэффициент подавления помех по цепям питания) в табл. 1, то бросается в глаза, что именно усилители со встроенными повышающими DC/DC имеют существенно лучшие значения этого параметра (91…95 дБ) по сравнению с остальными усилителями этого класса.

Среди усилителей с низкой и средней выходной мощностью есть и специализированный для работы на пьезокерамический излучатель с допустимой емкостью до 1,5 мкФ. При этом размах выходного напряжения на емкостной нагрузке достигает 19 В (от пика до пика) при минимально допустимом напряжении питания всего 2,5 В. Необходимо обратить внимание, что параметр (THD + N), характеризующий суммарные гармонические искажения вместе с шумовыми составляющими, измеряется на частоте 1 кГц при половине мощности от допустимого максимального значения.

На рис. 8 приведен навигатор для выбора микросхем усилителей класса D высокой мощности (отсчет высокой мощности для этого класса усилителей Texas Instruments начинает с 3 Вт).

Рис. 8.

Основные параметры этих микросхем сведены в табл. 2. Некоторые из микросхем, приведенных на рис. 8 и в табл. 2, относятся только к анонсированной продукции, поэтому возможность поставки образцов необходимо проверять на сайте производителя.

Таблица 2. Микросхемы Texas Instruments для усилителей класса D c высокой выходной мощностью (аналоговый вход)

Наименование Описание Pвых Вт Rнагр.
(min), Ом
Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR**, дБ Корпус(а)
(min) (max)
TAS5630 300 Вт усилитель (стерео)
с ОС
300 TBD*** TBD 50 TBD 80 QFP-64
TAS5615 150 Вт усилитель (стерео)
с ОС
150 TBD TBD 50 TBD 80 QFP-64
TAS5412 100 2 6 24 0,04 75 HTQFP-64
TAS5422 усилитель (стерео) с симметричным входом 100 2 6 24 0,04 75 HTQFP-64
TAS5414A усилитель (квадро) с несимметричным входом 45 2 8 22 0,04 75 SSOP-36, HTQFP-64
TAS5424A усилитель (квадро) с симметричным входом 45 2 8 22 0,04 75 SSOP-44
TPA3106D1 усилитель (моно) со входом синхронизации 40 4 10 26 0,2 70 HLQFP-32
TPA3123D2 усилитель (стерео) с несимметричным входом 25 4 10 30 0,08 60 HTSSOP-24
TPA3100D2 усилитель (стерео) 20 Вт 20 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3001D1 усилитель (моно) 20 Вт 20 4 8 18 0,06 73 HTSSOP-24
TPA3110D2 усилитель (стерео) с ограничением мощности 15 4 8 26 <0,1 70 TSSOP-28
TPA3122D2 15 4 10 30 <0,15 60 PDIP-20
TPA3107D2 усилитель (стерео) 15 Вт 15 6 10 26 0,08 70 HTQFP-64
TPA3124D2 усилитель (стерео) 15 Вт
с функцией Mute****
15 4 10 26 0,04 60 TSSOP-24
TPA3121D2 усилитель (стерео) с несимметричным входом 15 4 10 26 0,04 60 TSSOP-24
TPA3004D2 12 4 8,5 18 0,1 80 HTQFP-48
TPA3125D2 усилитель (стерео) в корпусе DIP-20 10 4 10 26 0,15 60 PDIP-20
TPA3101D2 усилитель (стерео) 10 Вт 10 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3111D1 усилитель (моно) с ограничением мощности 10 4 8 26 <0,1 70 TSSOP-28
TPA3002D2 усилитель (стерео) c регулировкой громкости 9 8 8,5 14 0,06 80 HTQFP-48
TPA3007D2 усилитель (стерео) 6.5 Вт 6,5 8 8 18 0,2 73 TSSOP-24
TPA3009D2 усилитель (стерео) c регулировкой громкости 6 8 8,5 14 0,045 80 HTQFP-48
TPA3005D2 усилитель (стерео) 6 Вт 6 8 8 18 0,1 80 HTQFP-48
TPA3003D2 усилитель (стерео) c регулировкой громкости 3 8 8,5 14 0,2 80 TQFP-48
TPA2008D2 усилитель (стерео) c регулировкой громкости 3 3 4,5 5,5 0,05 70 HTSSOP-24
*Half Power THD+N - (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц) **PSSR - Power Supply Rejection Ratio - коэффициент подавления помех по цепям питания ***TBD - To Be Documented - данные будут указаны производителем позднее ****Mute - приглушение звука

На основе микросхем Texas Instruments можно спроектировать усилитель класса D с выходной мощностью до 300 Вт при максимальном напряжении питания до 50 В.

Большой интерес для разработчиков могут представлять новые двухканальные микросхемы для усилителей этого класса TPA3122D2 и TPA3125D2 в корпусе DIP20.

Рис. 9.

Рис. 10.

Этот корпус удобен для монтажа и макетирования по сравнению с миниатюрными корпусами BGA с шариковыми выводами. Схема включения этих стереоусилителей отличается простотой и приведена на рис. 11. Синим цветом выделены параметры, соответствующие TPA3125D2 (мощность до 10 Вт), красным цветом - TPA3122D2 (мощность до 15 Вт).

Рис. 11.

Микросхемы имеют два входа регулировки усиления (четыре уровня), а также возможность отключения (Shutdown) и приглушения звука (Mute). На рис. 11 показан самый распространенный вариант включения двухканального усилителя в режиме SE (Single Ended Output - нагрузка подключается к каждому каналу - режим «стерео»). Для существенного увеличения выходной мощности рассматриваемых микросхем можно из двух каналов одной микросхемы создать одноканальный мостовой усилитель (схема BTL - Bridge Tied Load - подключение нагрузки к мостовой схеме). Принципиальные схемы включения микросхем TPA3125D и TPA3122D для мостового варианта усилителя класса D приведены в документации производителя для этих усилителей. На рис. 9 и 10 показаны зависимости выходной мощности от напряжения питания при одинаковых условиях измерения для схем в режиме «стерео» (SE) и для варианта мостового включения (схема BTL).

Измерение максимальной выходной мощности оценивается при конкретном значении суммы всех гармонических искажений и шумовых составляющих (THD + N). При переходе к мостовой схеме включения на одинаковых напряжениях питания, сопротивлении нагрузки и суммарных искажениях сигнала, выходная мощность возрастает в несколько раз. Поэтому в мощных усилителях обычно используют именно мостовую схему включения. Всего одна микросхема в корпусе DIP20 при таком подключении позволяет создать усилитель с максимальной выходной мощностью около 50 Вт при напряжении питания 30 В.

Шумы и нелинейные искажения

Основная информация о звуковом сигнале кодируется шириной импульсов на выходе модулятора. Необходимость введения задержки на величину паузы становится причиной нелинейных искажений, пропорциональных отклонению от точной длительности импульса модуляции. Сильное влияние на шумы оказывает коэффициент ослабления помех от источника питания PSSR. Из-за малого сопротивления шумы источника питания могут напрямую передаваться в громкоговоритель. ФНЧ срезает высокочастотные составляющие, но пропускает низкочастотные шумы. Для качественного звучания следует выбирать микросхемы с высоким значением коэффициента ослабления помех от источника питания. Эффективное решение перечисленных проблем - введение глубокой обратной связи, как это делается во многих линейных усилителях. Обратная связь с входа ФНЧ сильно повышает PSSR и ослабляет суммарные искажения и шумы, появляющиеся до LC-фильтра. Искажения в самом фильтре можно уменьшить включением громкоговорителя в цепь ОС. В грамотно спроектированных усилителях класса D с замкнутой ОС реально достижим суммарный коэффициент нелинейных искажений менее 0,01%.

Основные выводы

Все больше новых аудиоустройств создается на основе экономичных и эффективных усилителей класса D. Многолетний опыт и новые технологии компании Texas Instruments позволяют ей уверенно чувствовать себя на этом рынке с высокой конкуренцией. Усилители класса D позволяют, повышая эффективность, в несколько раз снизить габариты за счет исключения или значительного уменьшения размеров радиаторов в мощных схемах. Требуется менее мощный источник питания, что дополнительно снижает цену усилительного прибора. Для многих рассмотренных в статье микросхем Texas Instruments выпускает демонстрационные платы. Ознакомиться с решениями для построения аудиосистем можно на сайте производителя в разделе www.ti.com/audio , а по системам управления питанием - в разделе www.power.ti.com .

Получение технической информации, заказ образцов, поставка — e-mail:

Коэффициент полезного действия является основным параметром для усилителей мощности звуковой частоты. Особенно это важно для портативной аппаратуры, такой как радиоприемники или сотовые телефоны. Усилители с высоким к.п.д. применяются и в стационарных устройствах, таких как компьютеры или телевизоры. Усилители класса C позволяет получить достаточно большие значения к.п.д. но их невозможно использовать для усиления звуковых сигналов.

Основным параметром, определяющим потребление энергии выходным усилительным каскадом, является мощность, рассеиваемая на его транзисторах. При этом мощность не будет рассеиваться в двух случаях:

  1. ток через транзистор при ненулевом напряжении равен нулю;
  2. напряжение на транзисторе при ненулевом токе равно нулю.

Эти условия выполняются при работе транзистора в ключевом режиме. Первое условие будет выполнено, если транзистор полностью закрыть (режим отсечки). Второе условие будет выполнено, если транзистор полностью открыть (режим насыщения). Так работают транзисторы в цифровых микросхемах, например КМОП логики.

Но ведь в этом случае амплитуда сигнала на выходе будет иметь только два уровня. Для того чтобы можно было получить амплитуду сигнала, соответствующую входной, на выходе усилителя звука, в ключевом режиме используется широтно-импульсная модуляция — ШИМ.

Широтно-импульсная модуляция реализуется при помощи компаратора, на входы которого подаются полезный сигнал и пилообразное напряжение. В результате ширина импульса на его выходе будет пропорциональна амплитуде полезного сигнала. Данный процесс иллюстрируется рисунком 1.


Рисунок 1. Процесс формирования ШИМ

Как видно из рисунка 1, средний уровень сигнала зависит от ширины импульсов. Чем она меньше — тем меньше будет средний уровень сигнала, чем больше — тем больше. В спектре широтно-импульсной модуляции присутствует исходный низкочастотный звуковой сигнал, поэтому обратное преобразование ШИМ в аналоговый сигнал осуществляется любым фильтром низкой частоты. Достаточно отфильтровать высокочастотные составляющие двухуровневого сигнала и усиленный первоначальный сигнал можно подавать на громкоговоритель. Спектр широтно-импульсной модуляции синусоидального сигнала приведен на рисунке 2.


Рисунок 2. Спектр сигнала ШИМ

Так как мощность на выходе усилителя мощности обычно составляет значение от единиц до сотен ватт, то обычно применяются LC фильтры. Задача фильтра заключается в подавлении частоты пилообразного сигнала, модулированного полезным сигналом и его гармоник. Для того, чтобы можно было применить простейший фильтр второго порядка, частоту пилообразного сигнала выбирают в пределах двух мегагерц. Так как частота модулирующего сигнала превышает верхнюю частоту звукового спектра в 100 раз, то фильтр второго порядка, состоящий из индуктивности и конденсатора, способен подавить мешающие сигналы на 80 дБ (при соответствующем конструктивном исполнении).

Усилителя низкой частоты, работающего в режиме класса D, приведена на рисунке 3



Рисунок 3. Типовая структурная схема усилителя класса D

Данная схема состоит из входного усилителя, обеспечивающего требуемое входное сопротивление, компаратора напряжения, на второй вход которого подается пилообразное напряжение и выходного каскада, собранного на комплементарных полевых транзисторах. Именно эти транзисторы и обеспечивают необходимую выходную мощность. Их быстродействие определяет к.п.д. усилителя. Для оценки коэффициента полезного действия можно воспользоваться зависимостью рассеиваемой мощности от выходной мощности. На рисунке 4 приведены характеристики микросхем усилителя класса D фирмы Texas Instruments TPA2012D2.


Рисунок 4. Сравнение рассеиваемой мощности усилителей класса AB и D

Микросхемы подобного класса предназначены для применения в портативной аппаратуре. В таблице 1 приведены некоторые из таких микросхем. Обратите внимание на очень низкие этих микросхем.

Наименование Описание Стерео/моно Pвых, Вт Rнагр. (min), Ом Напряжение питания, B Нелин. искаж. на мощн. P/2 THD+N* (%), f=1кГц Коэфф. подавл. помех по цепям питания дБ Корпус
(min) (max)
TPA2017D2 SmartGain, AGC/DRC, GPIO интерфейс Стерео 2,8 4 2,5 5,5 0,2 80 QFN-20
TPA2000D2 усилитель средней мощности Стерео 2,5 3 4,5 5,5 0,05 77 TSSOP-24
TPA2000D4 усилитель для стерео телефонов Стерео 2,5 4 3,7 5,5 0,1 70 TSSOP-32
TPA2012D2 усилитель в корпусе WCSP 2 x 2 мм Стерео 2,1 4 2,5 5,5 0,2 75 WCSP-16, QFN-20
TPA2016D2 SmartGain, AGC/DRC, I2C интерфейс Стерео 1,7 8 2,5 5,5 0,2 80 WCSP-16
TPA2001D2 усилитель низкой мощности Стерео 1,25 8 4,5 5,5 0,08 77 TSSOP-24
TPA2100P1 для пьзокерам. излучателя Моно 19 Vpp 1,5 мкФ (пьезо) 2,5 5,5 0,2 90 WCSP-16
TPA2035D1 дифф. вход, 1,5 х 1,5 мм Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9

Несколько другой подход для построения усилителей класса D использует фирма Analog devices. В ее микросхемах вместо ШИМ модулятора используется сигма-дельта модулятор. Это позволяет поднять внутреннюю частоту до такого значения, что внешний фильтр низкой частоты не требуется. Его функции выполняет динамик. Внутренняя схема подобной микросхемы приведена на рисунке 5.



Рисунок 5. Внутренняя схема микросхемы SSM2317

В настоящее время выпускается достаточно большое количество микросхем усилителей класса D большой мощности. В качестве примера можно назвать разработки фирм MPS (Monolithic Power Systems) и Texas Instruments

Наименование Описание Pвых, Вт Rнагр. (min), Ом Напряжение питания, B Нелинейные искажения на половинной мощности THD+N* (%), f=1кГц Коэффициент подавления помех по цепям питания дБ Корпус
(min) (max)
TAS5630B 300 Вт усилитель (стерео) с ОС 400 2 25 52,5 0,03 80 QFP-64, PSOP-44
TAS5615A 160 Вт усилитель (стерео) с ОС 300 2 18 38 0,03 80 QFP-64, PSOP-44
MP7720 20 Вт усилитель (моно) 20 4 9,5 24 0,04 60 SOIC-8
MP7781 80 Вт усилитель 80 4 18 38 0,1 60 SOIC-24

Следует отметить, что подобные схемы практически не требуют громоздких радиаторов, рассеивающих избыточное тепло. На рисунке 6 приведена типовая принципиальная схема усилителя звуковых частот класса D.



Рисунок 6. Принципиальная схема звукового усилителя мощности класса D на микросхеме МР7720

В данной схеме резисторы R4 и R1 определяют глубину отрицательной обратной связи, которая влияет на коэффициент усиления усилителя и его нелинейные искажения. Резисторы R3 и R2 задают режим работы на входе микросхемы по постоянному току (половина питания). Диоды D1 и D2 защищают выходной каскад от перенапряжения. Фильтр, выделяющий из ШИМ звуковой сигнал собран на индуктивности L1 и конденсаторе C8. Емкости C1 и C9 являются разделительными.

Литература:

Вместе со статьей "Усилитель класса D" читают:


http://сайт/Sxemoteh/RejRab/


http://сайт/Sxemoteh/RejRab/A/


http://сайт/Sxemoteh/RejRab/Berg/


http://сайт/Sxemoteh/RejRab/B/

Это работа транзистора и усилителя при маленькой амплитуде напряжения запирания ниже, чем напряжение смещения. В этом случае амплитуда звукового сигнала меньше, чем напряжение смещения. В таком состоянии транзистор проводит только верхнюю часть положительной полуволны, что сильно искажает сигнал. Поэтому в аудио усилителях, этот класс не применяется. Такой режим работы транзисторов имеет высокий КПД (около 85%).

Режим работы Класс D - это усилители сигнала с широтно - импульсной модуляцией (ШИМ) и с частотно - импульсной (ЧИМ), в которых звуковой аналоговый сигнал преобразуется в цифровую форму, а в выходном каскаде происходит обратное преобразование.

В первом случае ширина синтезированных импульсных сигналов пропорциональна амплитуде входного (аналог) сигнала, во втором - изменяемой величиной является частота импульсов. В любом варианте при изготовлении усилителя мощности класса "D" получаем высокий коэффициент нелинейных искажений, обусловленный дополнительными процессами конвертации усиливаемого сигнала.

Для того, чтобы усилитель мощности перевести в класс "D" необходимо создать ключевой режим работы выходных транзисторов - замыкать и размыкать их. Для этого, на базу (затвор) транзистора подается ШИМ-сигнал обработанный периодической последовательностью прямоугольных импульсов (прямоугольный сигнал). Этот прямоугольный сигнал проходя через транзистор, отпирает и запирает его. В результате импульсного процесса (на короткое время) создаётся рабочая точка выходных транзисторов. Поэтому ток через транзисторы не потечёт если нет сигнала, это вызывает искажения звука свойственные классу "В".

Известно, что многозадачные электронные процессы и скорость переключения транзисторов не проходят мгновенно, это изменяет форму сигнала и увеличивает длину пути его прохождения. К тому же, интермодуляционные искажения звука в усилителях ШИМ имеют прямую зависимость, от частоты модуляции к частоте усиливаемого сигнала, что ограничивает их использование в звуковом диапазоне.

Класс "D" имеет одно неоспоримое преимущество высокий КПД - 90%.
Усилитель для сабвуфера - вот реальное применение класса "D" в аудио.
ШИМ-сигнал применяется для записи формата аудиодисков - SACD. Но на практике всплывают существенные недоработки этого нового формата.

Широтно-импульсная модуляция - это такой способ управления прибором, когда путем регулировки длительности импульса, по отношению к его периоду, достигают нужного среднего значения, которое меньше амплитудного.

Например: есть источник питания напряжением 100 вольт, и нагревательный элемент рабочим сопротивлением 10 Ом. Если подключить прибор напрямую к источнику, то получится выделение тепла мощностью 1000 Ватт, и так будет происходить постоянно, пока прибор не будет отключен от источника. Но что, если нужно получить только 500 Ватт, или, скажем, 200 Ватт, имея все тот же источник и все ту же нагрузку. Здесь на помощь как раз и может придти широтно-импульсная модуляция, или сокращенно ШИМ. Можно между источником и приемником поставить некий управляемый выключатель, который будет то подключать нагрузку к источнику, то отключать ее, причем происходить это будет так, чтобы длительность включения была равна длительности выключения, и так нужно повторять много раз, тогда нагрузка будет запитана только в течение половины всего рабочего времени, и мы получим, как в нашем примере, не 1000 Ватт тепла, а 500 Ватт, как и было нужно. Если теперь длительность включения сделать в пять раз меньше периода импульса, (сумма длительности включения и длительности выключения в каждом цикле - это период импульса) то и средняя мощность нагрузки будет в пять раз меньше, то есть 200 Ватт. Это весьма грубый пример, дающий общее представление о принципе.

Аналогичным образом происходит управление элементами электронных схем, где посредством специальных микросхем - ШИМ-контроллеров, задается необходимый режим широтно-импульсной модуляции для управления силовыми ключами, примером такого настраиваемого ШИМ-контроллера может послужить широко распространенная на рынке радиодеталей микросхема TL494.

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

Широтно-импульсная модуляция бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t к периоду импульса T . D = t/T . Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t .

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).

Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В). При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала. Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.

Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства.

Реализовать ШИМ можно посредством с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления. Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.

При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.

Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.

Цифровая широтно-импульсная модуляция

Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.

В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.

В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.


Самое обсуждаемое
Радио мобильного устройства представляет собой встроенный FM-приемник Радио мобильного устройства представляет собой встроенный FM-приемник
Android на большом экране: обзор Sony Ericsson XPERIA X10 Android на большом экране: обзор Sony Ericsson XPERIA X10
Скачать Гаджеты для Windows Скачать Гаджеты для Windows


top